
Maps on quantum states preserving the Jensen–Shannon divergence

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2009 J. Phys. A: Math. Theor. 42 015301

(http://iopscience.iop.org/1751-8121/42/1/015301)

Download details:

IP Address: 171.66.16.153

The article was downloaded on 03/06/2010 at 07:31

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/1751-8121/42/1
http://iopscience.iop.org/1751-8121
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND THEORETICAL

J. Phys. A: Math. Theor. 42 (2009) 015301 (9pp) doi:10.1088/1751-8113/42/1/015301

Maps on quantum states preserving the
Jensen–Shannon divergence

Lajos Molnár1,3 and Werner Timmermann2

1 Institute of Mathematics, University of Debrecen, H-4010 Debrecen, PO Box 12, Hungary
2 Institut für Analysis, Technische Universität Dresden, D-01062 Dresden, Germany

E-mail: molnarl@math.klte.hu and Werner.Timmermann@tu-dresden.de

Received 15 August 2008, in final form 22 October 2008
Published 26 November 2008
Online at stacks.iop.org/JPhysA/42/015301

Abstract

We show that any bijective map on the space of all quantum states which
preserves the Jensen–Shannon divergence is induced by a unitary or antiunitary
operator.

PACS numbers: 03.65.Db, 02.30.Tb
Mathematics Subject Classification: 81Q99, 47B49

1. Introduction and statement of the result

As is well known, distinguishability measures between quantum states play a central role in
quantum theory, especially in the areas of quantum computation and quantum information.
Many of these measures have origins in classical probability theory, statistics or information
theory. In fact, most of them were originally defined for probability distributions and later
extended to quantum states. This has happened, among others, to the Kolmogorov (or
variational) distance and the Kullback–Leibler divergence. Their quantum analogs are the trace
distance (more precisely, its 1

2 -multiple) and the relative entropy, respectively. However, there
are distinguishability measures between quantum states which have no classical probabilistic
origin. As an example we mention the so-called Bures metric. This concept is closely related
to the notion of Uhlmann’s fidelity which is an extension of the fundamental concept of
transition probability from the case of pure states to the case of mixed states.

Transformations on the space of quantum states which preserve a given physically relevant
relation or quantity can be considered as a kind of symmetries of the underlying quantum
system. For example, the maps on pure states which preserve the above-mentioned transition
probability are usually called quantum mechanical symmetry transformations. Wigner’s
celebrated theorem (see, e.g., [2, section 2.2]) concerning the structure of those maps states
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that every quantum mechanical symmetry transformation is induced by a unitary or antiunitary
operator on the Hilbert space that corresponds to the underlying quantum system. Motivated
by Wigner’s result, in our paper [8] we determined the structure of all maps on the whole
space of quantum states which preserve the Bures metric or the trace distance. Moreover, in
the recent work [7] the first author obtained a similar description for the transformations on
the space of states which leave the relative entropy invariant. It is well known (and, in fact,
easy to see) that any transformation implemented by a unitary or antiunitary operator has all
these invariance or preserver properties. The joint content of our results in [7, 8] is that there
are no other kinds of transformations with any of these properties different from that induced
by unitary or antiunitary operators. For further results on preservers of quantum structures
we refer to the second chapter of the volume [6]. Roughly speaking, by a preserver we mean
a transformation on a mathematical structure which preserves ‘something’ which is relevant
for the underlying structure (this ‘something’ can be a given quantity, relation, operation, a
collection of distinguished elements, etc).

Recently, in their paper [5] Majtey, Lamberti and Prato have introduced the concept of
Jensen–Shannon divergence for quantum states. This is a modification of the notion of relative
entropy and also has an origin in classical information theory. In fact, Rao [1, chapter 5] and
Lin [4] defined the Jensen–Shannon divergence for probability distributions as a symmetrized
version of the Kullback-Leibler divergence. That new divergence has many advantages: it is
always well defined and bounded, and its square root gives a true metric on the probability
distribution space. Besides classical information theory, the concept has proved to be useful
in other areas, for example, in some problems of statistical physics. The quantum Jensen–
Shannon divergence is a direct generalization of that concept for the case of quantum states. Its
various properties and the advantages of its use in quantum theory as a new distinguishability
measure between states were treated in the papers [3, 5]. It was pointed out there that this
divergence inherits several important, characteristic properties of the relative entropy. It is
invariant under unitary transformations, non-increasing under CP (completely positive) maps
and non-increasing when taking traces over parts of a composite system. Moreover, it is
jointly convex, it has a restricted additivity property and satisfies a kind of Donald’s identity.
However, in contrast to the relative entropy, it is always well defined and bounded by 1. It is
symmetric and, in fact, conjectured to be the square of a true metric on the state space. The
quantum Jensen–Shannon divergence is closely related to other quantum distances. It can
be applied to approximate the Wooters distance, its generalization defined by Braunstein and
Caves, and the Bures metric. It can be used to define a good entanglement measure, and it can
be interpreted as the upper bound for the accessible quantum information.

The aim of the present paper is to show that the symmetries of the space of states with
respect to the Jensen–Shannon divergence, i.e., the transformations which leave it invariant
have the same structure as in the case of the previously mentioned distinguishability measures.
Namely, every such a map is induced by a unitary or antiunitary operator on the underlying
Hilbert space.

Let us begin with the notation and the necessary definitions. In what follows, H is a
(complex) Hilbert space with dimension 2 � dim H < ∞. A state on H is a positive (semi-
definite) operator with unit trace. The set of all states on H is denoted by S(H). The elements
of S(H) are also called density operators. In what follows, ‘log’ denotes the binary logarithm
and ‘ln’ stands for the natural logarithm.

Let ρ, σ ∈ S(H) be states. The von Neumann entropy of ρ is the non-negative real
number

S(ρ) = −tr ρ log ρ.
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The relative entropy between ρ and σ is defined by

S(ρ‖σ) = tr ρ(log ρ − log σ)

(recall that this quantity can be infinite). The basic concept of this paper is the Jensen–Shannon
divergence. It is defined between ρ and σ by the formula

DJS(ρ‖σ) = 1

2

[
S

(
ρ

∥∥∥∥ρ + σ

2

)
+ S

(
σ

∥∥∥∥ρ + σ

2

)]
.

In terms of the von Neumann entropy DJS(ρ‖σ) can be expressed as

DJS(ρ‖σ) = S

(
ρ + σ

2

)
− 1

2
S(ρ) − 1

2
S(σ). (1)

As mentioned above, unlike the relative entropy, the Jensen–Shannon divergence is symmetric
in its two variables and it is always a non-negative real number (it cannot be infinite).

Among the fundamental properties of DJS discussed in [5], it was mentioned in
the first place that the Jensen–Shannon divergence is invariant under unitary (and also
antiunitary) transformations. Our result states that in fact there are no other kinds of bijective
transformations on the space of states having that invariance property. The precise statement
reads as follows.

Theorem. Let φ : S(H) → S(H) be a bijective map which preserves the Jensen–Shannon
divergence, i.e., which satisfies

DJS(φ(ρ)‖φ(σ)) = DJS(ρ‖σ)

for every ρ, σ ∈ S(H). Then there is either a unitary or antiunitary operator U on H such
that φ is of the form

φ(ρ) = UρU ∗ (ρ ∈ S(H)).

2. Proof

Before presenting the proof, we note that in the rest of the paper we follow the usual functional
analytical notation and conventions concerning Hilbert spaces and their operators. Namely,
the inner product 〈., .〉 on H is linear in its first variable and conjugate-linear in the second.
This is the reverse of what is common in physics. By a projection we mean a self-adjoint
idempotent. The rank of an operator is the dimension of its range, tr denotes the usual trace
functional on operators. If x, y ∈ H are arbitrary vectors, then x ⊗ y denotes the operator (of
rank at most 1) defined by

(x ⊗ y)(z) = 〈z, y〉x (z ∈ H).

Clearly, the rank-1 projections (i.e., pure states) are exactly the operators of the form x ⊗ x

with some unit vector x ∈ H . A small remark should be added here concerning the use of the
sign ⊗ of tensor product. Usually x⊗y has to be considered as an element (elementary tensor)
of the tensor product space H ⊗ H . But it is well known that the (complete) tensor product
H ⊗ H can be identified (via a unitary transformation) with the space of all Hilbert–Schmidt
operators on H. Under this identification the elementary tensor x ⊗ y corresponds exactly to
the operator we have defined above. This is the reason why we use the same symbol for that
operator.

We learn from [5] that

DJS(ρ‖σ) � 1

3
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holds for arbitrary ρ, σ ∈ S(H) and that

DJS(ρ‖σ) = 1 ⇐⇒ supp ρ ⊥ supp σ.

Here supp ρ denotes the support of ρ, which is the orthogonal complement of its kernel (which
is equal to the range of the operator ρ) and ⊥ stands for the relation of orthogonality between
subsets of the Hilbert space H. In what follows we shall usually use the shorter notation ρ ⊥ σ

instead of supp ρ ⊥ supp σ and speak about orthogonality between states.
After these preliminaries we can present the proof of the theorem.

Proof. The short outline of the proof is the following: firstly, we prove that the transformation
φ maps rank-1 projections to rank-1 projections and preserves the transition probability. We
next apply Wigner’s theorem and obtain the form of φ on the set of all rank-1 projections.
In the remaining and most essential part of the proof we verify that the form is valid for all
density operators.

To work out this plan, we first observe that as the orthogonality relation ρ ⊥ σ between
the elements ρ, σ ∈ S(H) can be characterized by the equality DJS(ρ‖σ) = 1, it follows that
φ preserves orthogonality in both directions. This means that for arbitrary ρ, σ ∈ S(H) we
have ρ ⊥ σ if and only if φ(ρ) ⊥ φ(σ).

For any collection C of states we write C⊥ to denote the set of all elements of S(H) which
are orthogonal to every element of C. It is easy to see that ρ ∈ S(H) is a rank-1 projection if
and only if {ρ}⊥⊥ = {ρ}. As φ is a bijection on S(H) which preserves the orthogonality in
both directions, using the above characterization we easily obtain that ρ ∈ S(H) is a rank-1
projection (i.e., a pure state) if and only if φ(ρ) is. This means that the restriction of φ on the
set P1(H) ⊂ S(H) of all rank-1 projections maps P1(H) onto itself. Our next aim is to show
that this restriction as a transformation on pure states preserves the transition probability.

Pick two rank-1 projections p, q on H. It follows from (1) that

DJS(p‖q) = S

(
p + q

2

)

and this quantity can easily be computed in the following way. First define a real-valued
function on the closed unit interval [0, 1] by

f (t) =
⎧⎨
⎩

−
(

1 + t

2
log

1 + t

2
+

1 − t

2
log

1 − t

2

)
, 0 � t < 1;

0, t = 1.

We assert that

DJS(p‖q) = S

(
p + q

2

)
= f (

√
tr pq) (2)

(cf (18) in [3]). In fact, in order to calculate S
(

p+q

2

)
we have to find the eigenvalues of the

positive operator p + q. Suppose p �= q (otherwise the case is trivial) and pick unit vectors
x, y from the ranges of p and q, respectively. We have p = x ⊗ x and q = y ⊗ y. The
matrix representation of the restriction of p +q onto the subspace generated by x, y in the (not
necessarily orthonormal) basis {x, y} is(

1 〈y, x〉
〈x, y〉 1

)
.

It follows immediately that the non-zero eigenvalues of p + q are 1 ± |〈x, y〉|. Moreover, as

pq = x ⊗ x · y ⊗ y = 〈y, x〉 · x ⊗ y

4



J. Phys. A: Math. Theor. 42 (2009) 015301 L Molnár and W Timmermannn

and tr x ⊗ y = 〈x, y〉, we obtain the equality
√

tr pq = |〈x, y〉|.
Now (2) follows.

Elementary differential calculus gives that the above-defined f is a strictly decreasing
function on [0, 1] and hence it is injective. As φ preserves the Jensen–Shannon divergence
between rank-1 projections, it follows from (2) that

f (
√

tr φ(p)φ(q)) = DJS(φ(p)‖φ(p)) = DJS(p‖q) = f (
√

tr pq).

Using the injectivity of f we infer that

tr φ(p)φ(q) = tr pq

holds for all p, q ∈ P1(H). This means that the restriction of φ on P1(H) preserves the
transition probability and hence it is a quantum mechanical symmetry transformation. By
Wigner’s theorem it follows that there exists a unitary or antiunitary operator U on H such that

φ(p) = UpU ∗ (p ∈ P1(H)).

Define a new transformation ψ : S(H) → S(H) by

ψ(ρ) = U ∗φ(ρ)U (ρ ∈ S(H)). (3)

We have already mentioned above that the Jensen–Shannon divergence is invariant under
unitary–antiunitary transformations. Therefore, ψ : S(H) → S(H) is a bijective map which
preserves the Jensen–Shannon divergence and has the additional property that ψ(p) = p

holds for every rank-1 projection p. In the remaining part of the proof we shall show that
ψ(ρ) = ρ holds for every ρ ∈ S(H), too.

Pick a state ρ ∈ S(H) and denote ρ ′ = ψ(ρ). For every p ∈ P1(H) we have

DJS(p‖ρ) = DJS(ψ(p)‖ψ(ρ)) = DJS(p‖ρ ′). (4)

We compute

DJS(p‖ρ) = S

(
p + ρ

2

)
− 1

2
S(ρ)

= − tr

(
p + ρ

2

)
log

(
p + ρ

2

)
+

1

2
tr ρ log ρ

= −1

2
tr[(p + ρ)(log(p + ρ) − I )] +

1

2
tr ρ log ρ

= −1

2
tr[(p + ρ) log(p + ρ)] + 1 +

1

2
tr ρ log ρ

= −1

2
tr[(p + ρ) log(p + ρ) − ρ log ρ] + 1.

Applying (4) we obtain that the equality

tr[(p + ρ) log(p + ρ) − ρ log ρ] = tr[(p + ρ ′) log(p + ρ ′) − ρ ′ log ρ ′] (5)

holds for every rank-1 projection p ∈ P1(H).
Now pick an arbitrary rank-1 projection p and an arbitrary self-adjoint operator S. Insert

the rank-1 projections on the curve t �→ eitSp e−itS , t ∈ R into the equality (5). We obtain that

tr[(eitSp e−itS + ρ) log(eitSp e−itS + ρ) − ρ log ρ]

= tr[(eitSp e−itS + ρ ′) log(eitSp e−itS + ρ ′) − ρ ′ log ρ ′].

5
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As the function log is a constant multiple of the function ln, we trivially have the modified
equality

tr[(eitSp e−itS + ρ) ln(eitSp e−itS + ρ) − ρ ln ρ]

= tr[(eitSp e−itS + ρ ′) ln(eitSp e−itS + ρ ′) − ρ ′ ln ρ ′] (6)

that holds for every t ∈ R. A small but important observation should be made here. Recall that
every bijective map on S(H) which preserves the Jensen–Shannon divergence also preserves
the orthogonality between the elements of S(H). As ψ acts like the identity on P1(H), it
follows that a rank-1 projection is orthogonal to ρ if and only if it is orthogonal to ρ ′. This
gives us that the supports of ρ and ρ ′ are necessarily the same. In what follows, we restrict our
considerations to this particular subspace denoted by H0. Suppose that the previously chosen
rank-1 projection p projects onto a one-dimensional subspace of H0 and that the self-adjoint
operator S also acts on H0 (i.e., it is zero on the orthogonal complement of H0). In that way
we can assume that in (6) only invertible operators appear in the arguments of the logarithms.

We now consider both sides of (6) as functions of the real variable t and differentiate them
at the point t = 0. First we have to check that

t �−→ tr[(eitSp e−itS + ρ) ln(eitSp e−itS + ρ) − ρ ln ρ] (7)

is a differentiable function. Although this is a real-valued function of one real variable, it is
in fact the composition of several more complicated functions with operator values and/or
operator variables. First, observe that the trace functional is linear and hence it is differentiable.
The differentiability of the one-parameter family t �→ eitS is well known and its derivative
is t �→ eitS · iS. There is no problem with differentiating a fixed operator multiple of an
operator-valued differentiable function of one real variable or the pointwise product of two
such functions. Thus, the only delicate point concerns the logarithm function which has
to be considered here as a transformation defined on the invertible positive operators and
taking values in the space of self-adjoint operators. In (7) this transformation is composed
from the right by the operator-valued function t �→ eitSp e−itS + ρ of the real variable t. From
section 4 in [9] we learn the following: the operator logarithm function is Fréchet-differentiable
and its derivative at a point T0 is given by the linear transformation

d ln T

dT

∣∣∣∣
T =T0

: X �−→
∫ ∞

0
(T0 + λI)−1X(T0 + λI)−1 dλ. (8)

Using the above information and applying some rules of differentiation (e.g., the Leibniz rule,
chain rule, etc), it is now not difficult to check that the function in (7) is differentiable and its
derivative at the point t = 0 is given by

tr

[
((iS)p + p(−iS)) ln(p + ρ)

+ (p + ρ)

∫ ∞

0
(p + ρ + λI)−1((iS)p + p(−iS))(p + ρ + λI)−1 dλ

]
.

Dividing this quantity by the imaginary number i we obtain

tr[(Sp − pS) ln(p + ρ)] + tr

[
(p + ρ)

∫ ∞

0
(p + ρ + λI)−1(Sp − pS)(p + ρ + λI)−1 dλ

]
.

(9)

We would like to write the second trace value above in a more simple form. To do this, we use
the fact that because of the continuity and the linearity of tr, the order of taking the trace and

6
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taking the integral can be interchanged and also apply the characteristic identity tr AB = tr BA

which holds for all operators A,B on H. We then compute

tr

[
(p + ρ)

∫ ∞

0
(p + ρ + λI)−1(Sp − pS)(p + ρ + λI)−1 dλ

]

= tr

[ ∫ ∞

0
(p + ρ)(p + ρ + λI)−1(Sp − pS)(p + ρ + λI)−1 dλ

]

=
∫ ∞

0
tr[(p + ρ)(p + ρ + λI)−1(Sp − pS)(p + ρ + λI)−1] dλ

=
∫ ∞

0
tr[(p + ρ + λI)−1(p + ρ)(p + ρ + λI)−1(Sp − pS)] dλ

= tr

[ ∫ ∞

0
(p + ρ + λI)−1(p + ρ)(p + ρ + λI)−1(Sp − pS) dλ

]

= tr

[( ∫ ∞

0
(p + ρ + λI)−1(p + ρ)(p + ρ + λI)−1 dλ

)
(Sp − pS)

]

= tr

[
(p + ρ)

( ∫ ∞

0
(p + ρ + λI)−2 dλ

)
(Sp − pS)

]
.

The value of the integral
∫ ∞

0 (p + ρ + λI)−2 dλ can be determined in several ways. One of the
possibilities is to use another result from the paper [9]. Clearly, by the formula (8) we have∫ ∞

0
(p + ρ + λI)−2 dλ =

(
d ln T

dT

∣∣∣∣
T =p+ρ

)
(I ).

As I commutes with p + ρ, we can use [9, proposition 2.2] to see that(
d ln T

dT

∣∣∣∣
T =p+ρ

)
(I ) = (ln′(p + ρ)) · I = (p + ρ)−1.

Therefore, we obtain for the second trace value in (9) that

tr

[
(p + ρ)

∫ ∞

0
(p + ρ + λI)−1(Sp − pS)(p + ρ + λI)−1 dλ

]

= tr

[
(p + ρ)

( ∫ ∞

0
(p + ρ + λI)−2 dλ

)
(Sp − pS)

]
= tr[Sp − pS] = 0.

Consequently, the derivative of the function in (7) at t = 0 equals

i tr[(Sp − pS) ln(p + ρ)].

It follows that differentiating both sides of the equation (6) with respect to the parameter t at
the point t0 = 0, we obtain that

i tr[(Sp − pS) ln(p + ρ)] = i tr[(Sp − pS) ln(p + ρ ′)].

Remember that this holds for every rank-1 projection p and self-adjoint operator S.
Pick any unit vector x and set p = x ⊗ x. Denote Tx = ln(p + ρ) − ln(p + ρ ′). (Observe

that ρ and hence ρ ′ as well have been fixed above, but as x varies, the operator Tx also varies.)
It follows that

tr[(Sp − pS)Tx] = 0

7
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holds for every self-adjoint operator S. Choose an arbitrary unit vector y which is orthogonal
to x and set S = y ⊗ x + x ⊗ y. Then we have

0 = tr[(Sp − pS)Tx] = tr[(y ⊗ x − x ⊗ y)Tx] = 〈y, Txx〉 − 〈x, Txy〉.
Thus we obtain that

〈y, Txx〉 = 〈x, Txy〉
holds for every unit vector y which is orthogonal to x. Inserting iy in the place of y (this is
also a unit vector which is orthogonal to x) we see that 〈(iy), Txx〉 = 〈x, Tx(iy)〉 implying

〈y, Txx〉 = −〈x, Txy〉.
Therefore, we deduce that 〈y, Txx〉 = 0 holds for every unit vector y which is orthogonal to
x. This gives us that Txx is a scalar multiple of x for every unit vector x.

Let x be a normalized eigenvector of ρ and set p = x ⊗ x as above. Clearly x is an
eigenvector of p + ρ. This implies that x is an eigenvector of ln(p + ρ). But as x is an
eigenvector of Tx , by the definition of Tx we obtain that x is an eigenvector of ln(p + ρ ′). This
further implies that x is an eigenvector of p + ρ ′ and hence also an eigenvector of ρ ′. Clearly,
in a similar manner one can verify that every normalized eigenvector of ρ ′ is an eigenvector
of ρ. So, we conclude that the eigenvectors of ρ and ρ ′ are the same and this implies that
these two operators can be diagonalized in the same orthonormal basis. Consider the matrix
representations of ρ and ρ ′ in that basis

ρ =

⎛
⎜⎝

λ1

. . .

λn

⎞
⎟⎠ , ρ ′ =

⎛
⎜⎝

λ′
1

. . .

λ′
n

⎞
⎟⎠

and let p be the rank-1 projection onto the subspace generated by the ith basis vector.
Computing both sides of (5) we easily obtain that

(λi + 1) ln(λi + 1) − λi ln λi = (λ′
i + 1) ln(λ′

i + 1) − λ′
i ln λ′

i .

We assert that this implies λi = λ′
i . To see this, consider the real function g(t) =

(t + 1) ln(t + 1) − t ln t defined for every 0 < t < 1. By differentiation, one can check
that g is strictly increasing and hence injective. Therefore, we obtain that λi = λ′

i . As this
equality holds for every 1 � i � n, we get the desired equality ρ = ρ ′ = ψ(ρ).

To sum up, we have proved above that the transformation ψ defined in (3) is the identity
on S(H). This means that U ∗φ(ρ)U = ρ which clearly implies

φ(ρ) = UρU ∗

for every ρ ∈ S(H). The proof of the theorem is complete. �
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